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Abstract-The temperature profiles and heat flux distributions in an end-fired right cylindrical furnace 
with circumferential sink surfaces were calculated by the Monte Carlo Method, for various flow patterns. 
The combustion pattern was determined from precise experimental data taken on cold ducted jets and its 
calculation included the effect of turbulent fluctuations of the fuel and oxygen concentrations as well as 
the mean values. 

The results compared favorably with previous calculations for identical conditions using the classical 
interchange method for the radiative terms. The Monte Carlo Method proved to be more flexible than the 
classical method in handling concentration variations in the radiating gases and changes in volume element 
geometry to conform more closely with jet structure. Various suggestions are proposed to circumvent the 
use of random numbers which lead to statistical errors, the major disadvantage of the Monte Carlo Method. 
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NOMENCLATURE 

weighting factor for various gray gases 
contributing to the absorptivity of the 
real gas ; 
weighting factor for various gray gases 
contributing to the emissivity of the 
real gas ; 
area of surface element [ft2] ; 
total radiant energy absorbed by a 
surface element per unit time [Btuih] ; 
area of entrance end of furnace [ft2] ; 
total sink area of furnace [ft2] ; 
total radiant energy absorbed by a 
volume element per unit time [Btuih] ; 
total sensible heat of gas flowing into a 
volume element per unit time [Btu/h] ; 
heat capacity of the gases [Btujlb”R] ; 
convergence control coefficient ; 
net heat flux by convection to a surface 
element [Btu/h] ; 
net heat flux by convection to a volume 
element [Btu/h] ; 
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Craya-Curtet number ; 
net heat flux by conduction to a surface 
element [Btuih] ; 
the heat generated by combustion 
within a volume element [Btuih] ; 
total sensible heat of gas flowing out of 
a volume element per unit time [Btujh] ; 
fraction of total combustion occurring 
in the volume element, i, j ; 
total radiant energy emitted by a sur- 
face element [Btujh] ; 
rate of energy release by combustion 
per sink area [Btu/hft2 sink] ; 
total radiant energy emitted by a 
volume element [Btu/h] ; 
mass flow rate of gas normal to the heat 
transfer surface [lb/hft2] ; 
convection heat transfer, coefficient 
[Btu/hft’] ; 
momentum flux entering with the 
induced stream [ftlbih2] ; 
momentum flux entering through the 
nozzle [ftlbjh2] ; 
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absorption coefficient of a gray gas 
[ft- ‘1 ; 
absorption path length [ft] ; 
mass flow of induced stream [lb/h] ; 
mass flow through nozzle [lb/h] ; 
Nusselt number ; 
Prandtl number ; 
Reynolds number ; 
temperature [“RI : 
dynamic mean velocity [ftih] ; 
kinematic mean velocity [ftlh] ; 
jet velocity [ftih] ; 
volume of element [ft3] ; 
mass flow of gases into and out of 
volume elements [lb/h] ; 
absorptivity of the gas for radiant 
energy emitted at the temperature in 
parenthesis ; 
emissivity of the gas at the temperature 
in parenthesis ; 
density of gas [lb,ft3] ; 
StefannBoltzmann constant [Btuih ft2 
R4]. 

IN RECENT years many numerical methods have 
been proposed in order to solve the non-linear 
integro-differential equations resulting from 
radiative heat transfer problems. Of these 
methods the one which appears to be able to 
handle the complex situations which arise in 
actual engineering problems is the Monte Carlo 
Method. An extensive review of the use of this 
method in relation to heat transfer problems has 
recently been presented by Howell [l]. 

A number of radiative problems of increasing 
complexity which have been investigated by this 
method have recently appeared in the literature. 
These include; the radiative transfer within an 
infinite slab of gray gas between parallel walls 
[2], the same problem with a real gas [3], and 
[4], radiative transfer within a gray gas between 
concentric cylinders [5], the calculation of 
radiative interchange factors between surfaces 
whose properties are directional dependent [6], 
and the radiative transfer in a high temperature 

It was felt that it would be worthwhile to carry 
out a numerical experiment using the Monte 
Carlo Method to analyze the radiative transfer in 
a realistic furnace chamber with a flow pattern 
and combustion pattern which could be calcu- 
lated with reasonable accuracy. Such a problem 
is an end tired cylindrical furnace with heat 
absorbing circumferential walls and adiabatic 
end surfaces previously considered by Hottel 
and Sarofii [Y] using a classical radiative inter- 
change method. The radiative exchange for this 
problem has been simulated by the Monte Carlo 
Method for operating conditions similar to 
those used by Hottel and Sarofim in order to 
obtain a direct comparison of results. Additional 
modifications have been introduced so that the 
concentration of radiating (and absorbing) gases 
within the system may be taken into account. 
Also conical volume elements have been used 
to give a better representation of the .jet flow 
pattern so that more accurate temperature and 
heat flow distributions may be obtained with 
less computation time. 

Description of the system 
The furnace under consideration, shown in 

Fig. 1, is an end fired right circular cylinder. In 
order to make a direct comparison with the work 
of Hottel and Sarofun [9] identical geometry 
was used. This consisted of a fixed length to 
diameter ratio of 8,3 and furnace diameters of 
1 and 4 ft. The circumferential wall was taken 
as a gray sink maintained at 1460”R with an 
emissivity of 0.8. The end walls were treated as 
adiabatic surfaces with an emissivity of @5. Both 
types of surfaces were assumed to emit and reflect 
diffusely. 

For convection heat transfer analysis the 
circumferential wall was assumed to consist of 
4 in. dia. tubes backed by a refractory surface. 
The tube area was takenas equal to the circum- 
ferential wall. 

The end walls are such that the gases may flow 
freely through them. but all radiation impinging 
on these surfaces is either absorbed and reradi- 

rocket nozzle [7] and [8]. ated or reflected. This simplification defines a 
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FIG. 1. The cylindrical furnace. 

radiatively closed system and eliminates any directly from the exit gas enthalpy. A summary 
complicating interaction with the entrance and of the range of system and calculation variables 
exit systems. used is given in Table 1. 

The furnace was fired with a gaseous fuel of 
composition (CH,), having a heat of combustion 
of 19 150 Btuilb. The air flow rate was maintained 
at 15 per cent excess air and was preheated to the 
temperature of the circumferential wall, 1460”R, 
so that furnace efficiencies could be calculated 

Division of the furnace enclosure 
In order to perform a calculation of this nature 

it is necessary to divide the systen into a number 
of finite regions upon which an energy balance 
may be written. 

Table 1. Sunmary of calculatwn wiables 

Length to diameter ratio 
Furnace diameters 
Sink wall temperature 
Air and fuel preheat 
Fuel composition 
Fuel Heat of Combustion 
Excess air 
Flow patterns 

Firing rates 

Axial division of furnace 
Radial division of furnace 

Combustion patterns 

s/3 
1.4rt 
1460 R 
1460 R 
(CH,), n = 3 
- 19150 Btu.lb 
15 per cent 
Plug flow, Ct numbers 
of 051,018,0~033 
1 x 10J and4 x 104* 
Btu, h,ft’ of sink area 
X equal elements 
3 and 6 cylindrical elements 
of equal width. also conical 
division to allow for 
concentration gradients. 
As Saroiim [5] except for 
Ct = 0.51 where they were 
recalculated for different 
types of radial division 

* Here the firing rates were slightly higher-up to 1 per cent higher than the nominal values above. In Sarofim’s calculation 
[5] they were slightly lower-up to 1.5 per cent lower than the nominal values above. 
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FIG. 2. Cylindrical radial division of the furnace into elements 

Initially the furnace enclosure was divided 
into elements identical to those used by Hottel 
and Sarofim [9] so that a direct comparison of 
the results could be made. This type of zoning 
included eight divisions of equal length along 
the axis and three divisions of equal increments 
along the radius. The surface elements corres- 
ponding to these divisions will include eight 
circumferential elements of equal width and 
three concentric elements on each end with equal 
incremental radii. The subscript j denotes the 
axial direction, and i the radial direction. The 
furnace divided in this manner is shown in 
Fig. 2. 

In order to determine the effect of the size 
and shape of the volume elements on the calcula- 
tion the system was later divided into six equal 
radial increments and finally three conical 
elements as shown in Fig. 3. In the latter instance 
the division between the radial element i = 3 
and i = 4 was made to follow the jet boundary 
as closely as possible. The division between the 
element i = 2 and i = 3 bisected the remaining 
radius. 

Energy balances 
The temperature distribution and various heat 

fluxes within the system are determined by 

I- Conical radial _,_Cyl~ndricol radlol_l 

DIVISION sectlon DlVlSlOrl section 

FIG. 3. Conical radial division of the furnace into elements. 
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writing energy balances on each of the individual 
surface and volume elements in the system. 

Considering a volume element. r! a steady 
state energy balance can be broken down in the 
following manner : 

4 

+ B, 

+ c,, 

+ D,. 

- E, 

- F, 

(the total radiant energy absorbed in I/ 
which was emitted by all surface and 
volume elements in the system includ- 
ing T/itself), 
(the total sensible heat content of gas 
flowing into V), 
(the net heat flux by convection from 
the surface elements adjacent to V), 
(the heat generated by combustion 
within V), 
(the total sensible heat content of gas 
flowing from V), 
(the total radiant energy emitted by V). 

Writing a steady state energy balance on the 
surface element, A, in a similar manner : 

A 

+ G 

+ Da 
= Fll 

(the total energy absorbed by A which 
was emitted by all surface and volume 
elements in the system including A 
itself). 
(the net heat flux by convection from 
volume elements adjacent to A), 
(the net heat flux by conduction to A), 
(the total radiant energy emitted by A). 

These energy balances result in a set of simul- 
taneous equations equal to the total number of 
surface and volume elements within the system. 
Each equation contains one unknown which 
cannot be calculated by independent means. The 
unknowns are the temperature of the volume 
elements and the end wall surface elements. A 
solution can be obtained in principle since the 
number of equations just equals the number of 
unknowns. Each of the terms in the above 
equations were determined by a combination of 
theoretical considerations and available experi- 
mental data. 

Furnace flow patterns 
The calculation was carried out for four 

different flow patterns; plug flow and three flow 
patterns produced by a turbulent fuel jet fired 
at the centre of one end of the furnace. 

The plug flow pattern was produced by the 
combustion products entering at the adiabatic 
flame temperature of the fuel--air mixture 
(4525 R) uniformly spread over the furnace 
entrance. The uniform flow proceeds along the 
furnace to the exit end but radial temperature 
gradients are allowed to develop. 

The boundary conditions for the jet flow 
patterns include a finite diameter fuel jet at the 
centre of one end with the intake air uniformly 
spread over the remaining cross section. The 
burned exit gases pass through the centre por- 
tion of the adiabatic end wall included within a 
radius which is 4 the furnace radius. 

The flow characteristics of a turbulent ducted 
jet are known to be a function of the dimension- 
less group known as the Craya--Curtet number, 
Ct [lo]. This analysis indicated that the flow 
pattern of such a system is given by the ratios 
of the mass and momentum fluxes of the jet and 
induced streams. High values of the Ct number 
indicated low nozzle momentum and sufficient 
ducted air to fulfil the jet entrainment require- 
ments. When the Ct number becomes less than 
074 the flow begins to recirculate from the down- 
stream region of the jet along the duct wall to 
reenter the jetting stream since the induced air 
can no longer completely satisfy its entrainment 
requirements. The recirculation increases as the 
Ct number decreases until it fills the entire duct 
at Ct = 0. The three Ct numbers used were 0.033, 
0.18 and 0.51 corresponding to recirculation 

cates of 9.5, 1.4 and 0.075 times the total exit 
flow rate respectively. Details of these flow 
patterns are given by Hottel and Sarofim [9] for 
identical Ct numbers and will not be presented 
here. It should be noted however, that the 
recirculation rate calculated here was 15 per cent 
lower than that of Hottel and Sarofim for a 
Ct = 0.033. 

The cold flow patterns were used directly in 
the calculation. This assumption becomes more 
valid as the recirculating flow fills more of the 
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furnace since the temperature gradients are 
reduced. Beer et al. [ 1 l] found good agreement 
between flow patterns in a cold model and a hot 
furnace of similar geometry to the furnace under 
investigation. 

The flows in the axial direction to and from 
each element of furnace volume were calculated 
by numerical integration of the axial velocity 
profiles. The net flows in the radial direction 
were then determined by a mass balance for 
each element. Details ofthe calculation including 
the computer program listing can be found in 
the original thesis [ 121. 

The effective eddy flows in the radial direction 
have been calculated by Sarofim [13] using the 
cross-correlation (U’T’iU T ) for a free jet max max 
and the concentration and velocity profiles for 
a ducted jet reported by Becker [14]. The 
analogy between heat and mass transfer was 
assumed in using the concentration fluctuations 
to replace the temperature fluctuations in the 
above cross-correlation. The effective eddy 
flows used in the present calculation are those 
obtained by Sarofim [13]. These values have 
been interpolated graphically for the different 
types of radial diversions encountered in this 
analysis. 

Once the flow pattern has been established it 
is possible to determine the sensible heat flux 
into and out of the volume elements, I?,. and E,.. 

in terms of the temperatures of the surrounding 
elements and the element temperature itself. 
Thus, the sensible heat flowing into and out of 
the volume element i, j is given by : 

3 UT 4 

Et> = C W:,j-+kcp7;,j (2) 
h=l 

where k is summed over the four (or three) 
volume elements surrounding the element i, j. 

Fuel combustion and conlbustion product 
concentration distribution 

The nozzle fluid concentration field and the 
axial values of the fluctuating component of 
nozzle fluid concentration for the cold ducted 
jet system measured by Becker [ 141 and [lo] 
were used directly to calculate the distribution 
of the combustion of fuel within the furnace 
according to the method recommended by 
Hawthorne et al. [15]. The profiles of fuel 
concentration thus obtained were integrated 
numerically at each division to obtain the com- 
bustion occurring between fixed axial levels. 
The distribution of combustion between radial 

FIG. 4. Lines of equal CO, partial pressure and mean CO, 
partial pressures across element boundaries. 
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elements was estimated from mass balances on 
the radial elements. 

The combustion patterns obtained in this 
manner are presented in Table 2 together with 
those calculated by Hottel and Sarofim [9]. 
There is some disagreement between the two 
calculations. The combustion patterns obtained 
by Hottel and Sarofim were used in the present 
calculation when the radiative heat transfer 
calculated by the Monte Carlo Method was to 
be compared directly with their results obtained 
from the classical interchange method. For all 
other calculations the combustion patterns 
obtained by the authors were used. 

furnace into an inner cone region with a com- 
bustion partial pressure approximately double 
that of the outer cone region. A very low partial 
pressure of combustion product gases occurs in 
the region outside the cones. These conical 
divisions conform more closely to a jet structure 
and will be used to advantage in the radiative 
calculation. 

The combustion patterns presented in Table 2 
are used to evaluate II,, the heat generated by 
combustion within each volume element accord- 
ing to the relation: 

Dc = FAdi, j (3) 

Table 2. Combustion patterns as.fractions of the total cmhusrwtl,for each columr element 

Axial index J = 2 3 4 5 6 7 8 9 

Calculated in the present work 
for Ct = 0.51 
3 Cylindrical radial divisions 

I=2 0,138 0.230 0,181 0,131 a140 @083 0.057 0.030 
6 Cylindrical radial divisions 

I=2 0.140 0.137 0.09 1 0.048 0,044 0,030 0,019 0.010 
I=3 OGIO 0093 0,090 0093 0,096 0,053 0.038 0,020 

3 Conical radial divisions 
Inner cone 1 = 2 0.043 0,137 0,134 0.118 0.120 0.076 @040 0.020 
Outer cone I = 3 0,095 0.093 0,047 0,023 0,020 0,007 PO17 0.010 

Calculated by Sarofim [13] 
3 Cylindrical radial divisions 

ct = 0.51 I = 2 0,185 0.170 0.160 0,130 0,105 0.100 0~080 0,070 
Ct=@18 I=2 0.450 0170 @llO 0,100 0.100 0,070 OQOO oGOo 
Cr = 0.33 I = 2 I ,000 0.000 0~000 0.000 0000 0000 0~000 0~000 

A knowledge of the combustion pattern leads 
immediately to the combustion concentration 
field. Lines of constant carbon dioxide partial 
pressure are presented in Fig. 4. Since the fuel 
composition is (CH,), the water vapour partial 
pressure will be identical to that of CO, if the 
small difference in rate of final product forma- 
tion is neglected. Also given in the same figure 
are the integrated values for each conical 
element. The figure shows that the conical radial 
divisions divide the first three quarters of the 

where F, = rate of energy release by combus- 
tion per sink area, Btuihft’ sink. 

A, = total sink area, ft2 
J;, j = fraction combustion in element i, j. 

It is apparent that for a particular furnace 
geometry and Craya-Curtet number the com- 
bustion pattern is determined. 

Convection heat transfer to the fknace walls 
The convective heat transfer coefficients to 

the various elements of circumferential sink wall 
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were calculated as for flow parallel to 4 in tubes Thus the convection heat flux terms in the 
using the correlation : energy balances. C,. and C,. can be written as : 

NM = 0.023 Pr”‘“Reo’X (4) Cl. = hA(7;+ 1, j - 7;. j) (6) 

The velocity at the wall at the entrance end of 
each axial element was substituted into the 

cfl = hAt7;P 1, j - T, j) (7) 

Reynolds number. where h can be obtained from Table 2. 

To/de 3, Conrcctice heat trun.sfer co&ient.~ to thrfifrnuc~ sdc urd end wtrll5 (Btu h ji’ R) 
- 

Furnace firing rate 
x 10 Btu h ft’ sink L 

Furnace diameter. ft 
1 1 1 I 3 4 1 
I 3 4 1 3 J 4 

Flow pattern Plllg Phg Plug 

<‘raya--Curtet number, Ct 0.05 1 0.05 1 0.1x 0.033 0.51 0.1x 0.033 
___. 

Coefficient for end walls 2.1X 2.18 2.1X 2.1 x 642 642 642 
Sarofim used 3.10 3.10 3.10 3.10 6.60 6.60 6~60 

Coeflicient for sink wall 
Axial index J 

2 I.5 I.5 I.5 I.5 1.5 1.5 I.5 
3 1.5 I,5 1.5 1.5 1.5 I.5 2.x5 
4 1.5 I.5 1.5 1.62 I.5 1.5 3.90 
5 I.5 1.5 1.5 2.21 I.5 I.5 &XX 
6 1.5 1.5 I.5 2.63 1.5 1.5 X.01 
7 I.5 I.5 I.5 2.57 I.5 1.63 7.79 
X 1.5 I.5 I.5 2.23 1,5 1.5X 6.79 
9 1.5 I.5 1.5 1.x5 I.5 l-5 5.6 1 

Sarofim used J = 2--Y 1.5 I.5 I.5 3.1 I,? I.“, ‘).(I 

The convective heat-transfer coefficients to 
the surface elements on the end walls were deter- 
mined by assuming flow normal to a flat plate. 
The relation presented by Friedman and Mueller 
[16] : 

h = 0.070 G@‘a (5) 

was used where G was taken as the average mass 
flow normal to the exit end wall. lb/hft2 and h 
is given in English units, Btuihft’ ’ R. 

A minimum value for h to all walls of 1.5 
Btuihft” R was specified. These values differed 
somewhat from those used by Hottel and 
Sarofim [9] and the two sets are given in Table 3. 
The present calculation used those values 
calculated by the authors at all times and the 
values of Hottel and Sarofim are shown for 
comparison only. 

Radiative heat jluxes 

The terms which remain to be evaluated in the 
set of energy balances presented earlier are those 
associated with the radiative heat transfer A,., 
A,, F, and F,. In order to evaluate these terms the 
radiative properties of the combustion product 
gases were taken as identical to those used by 
Hottel and Sarofim [9]. They used a common 
technique which approximates a real gas by a 
mixture of gray gases where the emissivity is 
expressed as a weighted series of exponentials 
with different absorption coefficients which are 
independent of temperature. This approximation 
has been shown to be a good one [9]. 

c&T,) = 1 a;,(T,) (1 - CKnL) 09 
n 

where : c a;*( T,) = 1. 
,I 



An expression based on similar assumptions 
for the absorptivity of the gas for radiation from 
a surface at a temperature, T, gives: 

cx,(T,) = c a,(T,)(l - eeKnL). (9) 
,I 

It has been shown [9] that a value of n = 3 
represents accurately the gas mixture under 
consideration if the weighting factors variation 
with temperature is given by a third order poly- 
nomial such as: 

a,, = u,,,, + a,,,T+ anzTZ +u,,~T~. (10) 

The values of the coefticients in the above 
equation for the system under consideration 
have been obtained by Hottel and Sarofim [9] 
and are given in Table B-l of their paper. 

The radiative emission of the volume element 
i, j can now be given directly as : 

F,. = 41 u;,K,,T: jV (11) 
,I 

and the surface element i, j as: 

F, = 1 u,,TzjA. 
,I 

(12) 

Substitution of the various terms into the 
original energy balances gives an equation for 
each element in terms of calculable quantities. 

Volume Element i, j 

3or4 

4C ubK,lTzjV= A,. + C Wk+i,jC,T, 
,I !,=l 

3 or 4 

- kz, M/;.j-hcpT.j 

+h I+ l,jA(T+ 1.j - 7;, j) + F,A,P,. j * (13) 

Surface Element i, j 

C u,,?jA = Aa + h,,jA(T- 1.j 
,I 

- T7,‘.j)+D,. (14) 

The quantities in the above equations which 
remain to be determined are the radiative inter- 
change terms A.. and A_. 

The determination of the distribution of 
radiative emission throughout the enclosure 
requires a knowledge of the concentration of 
radiating gas and the temperature at each point 
in the system. The former was determined 
previously from the combustion and flow 
patterns; hot&ever, the temperature distribution 
is one of the unknown quantities sought. There- 
fore, a trial and error or iterative solution is 
necessary. 

The calculation starts by assuming a tempera- 
ture distribution among the volume elements so 
that the temperature dependent properties as 
well as the net radiant energy emitted by each 
element may be determined. This net radiant 
energy emitted by a volume element or an 
adiabatic end surface is given by 

F,. - A, = B,. + C,. + D,. - E,, (15) 

u F,, - A,, = C, + II, (16) 
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Monte Carlo simulation of radiative interchange 
The classical method for handling radiative 

interchange between elements of volumes and/or 
surfaces is to evaluate the multiple integral 
which describes the interchange by some type of 
numerical integration technique. An alternative 
method used here is the simulation of the 
radiative emission in the enclosure by the Monte 
Carlo Method to obtain A, and A, directly. 

The Monte Carlo Method uses bundles of 
energy to simulate the actual physical processes 
of radiant emission and absorption of energy 
occurring within the enclosure. These energy 
bundles are similar to photons in their behaviour, 
but the energy per bundle is constant and does 
not vary with the temperature, its spectral region 
or its point of emission. The energy per bundle 
is simply some fraction of the total or net radiant 
energy emitted throughout the system per unit 
time. The history of an energy bundle from its 
emission until it is finally absorbed is determined 
by a series of random numbers which are gener- 
ated every time a decision with respect to 
position, direction, spectral region, path length, 
reflection or absorption is required. 

Calculation procedure 
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where the terms on the right-hand side can be 
obtained once the temperature of the element 
is assumed. Since the temperature of sink 
surfaces are fixed as a boundary condition, their 
total emission can be calculated directly from 
equation (12). 

The radiative interchange among the elements. 
terms A,, and A,, is obtained directly by the 
following Monte Carlo procedure. The net 
radiant energy emitted by all the volume and 
adiabatic surface elements. plus the total radiant 
energy emitted by the sink surface elements, is 
the radiative energy which must be simulated. 
This quantity is divided by the total number of 
energy bundles to be released in the simulation 
in order to obtain the energy per bundle. The 
net radiant energy emitted by an element (or the 
total radiant energy for a sink element) is 
divided by the energy per bundle to give the 
number of bundles originating at each element. 

The bundles are now released from those 
elements with a positive number of bundles and 
traced until they are absorbed by either an 
element with a negative number of bundles or a 
sink surface with a fixed temperature. If the 
bundle is absorbed by an element with a net 
emission or an element which has already cap- 
tured its required number of bundles, it is 
re-emitted as an initial emission at the point 
where it was absorbed. 

The point of emission and path of travel is 
determined by random numbers in the following 
manner. The point of release within the volume 
element is determined by two random numbers 
giving its radial and axial position assuming that 
the origin of emission is equally likely at any 
point within the element. For gas radiation 
emission is equally likely in all directions and 
the circumferential and cone angles are deter- 
mined by random numbers accordingly. The 
spectra1 range is given by another random 
number corresponding to the weighting factors, 
equation (8) which gives the absorption coeffici- 
ent to be associated with this particular bundle. 
If the bundle does not fall within the clear 
spectral range an additional random number 

fixes the path length travelled before absorption 
according to the exponential law. The latter 
value gives the point on the surface where the 
bundle is intercepted or the location in the 
volume element where it is absorbed and 
possibly reemitted. in which case the procedure 
is repeated. All bundles are treated in this 
manner so that the total number of absorptions 
of each volume or surface element ma> be 
tabulated. The total number of bundles absorbed 
by each element including those reemitted 
multiplied by the energy per bundle gives the 
interchange of radiation among the elements, 
A,. and A,. 

Each of the above distributions involving a 
random selection is normalized and replaced by 
a rectangular distribution so that a single 
random number generator operating between 
zero and unity can be used in all cases. The 
distribution functions have been tabulated by 
Howell [l]. Additional details concerning the 
particular method used in this instance can be 
obtained from the original thesis [ 121. 

A,, and A, are now fixed quantities and a new 
temperature distribution can be calculated by 
solving the set of simultaneous equations (15) 
and (16), among the volume and surface 
elements. Since the element temperatures raised 
to the fourth power, the element temperatures 
raised to the first power and adjacent element 
temperatures raised to the first power are all 
present in each individual balance a solution 
was obtained by the Newton--Raphson method 
[ 171. This new temperature distribution will be 
known henceforth as the “calculated tempera- 
tures”. T;.l,i. A new set of “assumed tempera- 
tures” T,;,, ,, is then obtained from the relation 

Ti,,j = 
Tit,j + CTu,j 

(C + 1) 
(17) 

where T,,,j is the previous set of assumed 
temperatures and C is the “convergence control 
factor” to be used systematically to promote 
rapid convergence. 
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Determination of efficient calculation parameters 
In an iterative calculation of this type it is 

necessary to show that the solution is converging 
to the proper answer. It is desirable that the 
procedure should produce convergence as 
rapidly as possible. Extensive tests were con- 
ducted to give insight into various procedures 
for obtaining rapid convergence. Some typical 
results are presented in Figs. 5 and 6 for a 
one ft diameter furnace with a firing rate of lo4 
Btu/hft2 sink undergoing plug flow. The volume 
elements were formed by eight axial and three 
cylindrical radial divisions. The points on the 
two figures are from the same calculation. 

Element J=5 
Temperature 

l Assumed 
0 Calculated 

FIG. 5. Variation of assumed and calculated temperatures in 
converging to a final result. Plug flow with 3 cylindrical 

radial divisions. 
Furnace diameter = 1 ft. 
Firing rate = 1 x lo4 Btuih/ft* sink. 

Figure 5 shows the values of the calculated 
temperature and assumed temperature for two 
volume elements j = 5, i = 2 and j = 5, i = 4, 
as the iteration proceeds; demonstrating the 
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magnitude of the fluctuations encountered due 
to the random number simulation. 

Figure 6 gives the average deviation of the 
new calculated temperatures from the previously 
assumed temperatures taken over all volume 
elements. This quantity is a measure of the 
accuracy of the temperature distribution once 
the calculation has converged. 

\. 

\ 
. l \. 

. 

i .- 
0. 

t I I I I I 
I 5 10 15 20 

Iteration number 

FIG. 6. The change in the gas temperature distribution 
accuracy as the calculation converges. Plug flow with 3 

cylindrical radial divisions. 
Furnace diameter = 1 ft. 
Firing rate = 1 x lo4 Btujh,ft’ sink. 

Figures 5 and 6 indicate that when the 
number of bundles released in the Monte Carlo 
calculation is reduced (iteration 10) temperature 
fluctuations increase substantially. 

Figure 6 indicates that the average tempera- 
ture deviations decrease to a level determined 
by the number of bundles released. It was found 
[ 121 that this level is proportional to the number 
bundles released raised to the f power as 
expected from theoretical considerations [ 11. 
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The computation time was found to be 
approximately proportional to the number of 
bundles released since following the paths of 
the bundles is the major source of repetitive 
calculation. In the run on which Figs. 5 and 6 
are based it required about 3.5 s on the IBM 
7094 machine to follow 1000 bundles. Thus. 
10004I bundles would require approximately 35 s 
for tracing. 

The only system parameter which influenced 
the computation time significantly was the 
furnace diameter. A four fold increase in the 
diameter from one to four ft increased the com- 
putation time for tracing 1000 bundles by 
approximately a factor of two. This is of course 
due to the increase in the number of absorptions 
and reemissions per bundle for the larger 
enclosure. 

The rate of convergence is influenced by the 
convergence control coeffkient where a high 
value gives slower convergence but a low value 
may cause instability when the radiative flux 
terms in equations (13) and (14) are small 
relative to the sensible heat terms. It appears 
from Fig. 6 that a value of unity is safe and a 
smaller value is justified as the sensible heat 
terms increase relative to the radiative heat flux 
terms. 

Additional details on the effect of the conver- 
gence control coefficient and the number of 
bundles released may be obtained from the 
original thesis [12]. However, it can be stated 
that in general an efficient calculation with 
respect to computation time may be carried out 
by starting with a small number of energy 
bundles (1000) and a convergence control 
coefficient of unity. Once the temperature distri- 
bution reaches the level of accuracy associated 
with this particular number of bundles, the 
quantity should be increased by steps until the 
desired accuracy is obtained. Meanwhile the 
convergence control coefficient should be gradu- 
ally decreased to zero. 

Con~parisor~ with classicul solution 
A number of runs were made under similar 

conditions to those of Hottel and Sarofim [9] so 
that a direct comparison of the two methods 
could be made. Figures 7 and 8 present some 
typical results. 

0 Monte Carlo 
l Sorofim 

2000 I 
ioooOl 

Axial position 

FIG 7 Comparison of central radial element temperatures 
calculated with those of Sarofim. Combustion pattern of 

Sarotim and 3 cylindrical radial divisions 
Furnace diameter = 4 ft. 
Firing rate = 4 x IO4 Btu#h,ft’ sink. 

Figure 7 gives the axial temperature profile by 
both methods for the case of a 4 ft dia. furnace 
with a firing rate of 4 x lo4 Btuihft’ sink surface. 
Results for plug flow and a Craya--Curtet 
number of 0.51 are shown. The furnace was 
divided into 8 axial and 3 radial cylindrical 
divisions for both cases. The combustion patterns 
calculated by Hottel and Sarolim, Table 2, were 
also used in the Monte Carlo calculation. 
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Figure 8 gives the heat flux distribution along 
the sink wall for plug flow with the same condi- 
tions by both methods. Other comparisons gave 
results with approximately the same magnitude 
of difference. Table 4 gives a break-down of the 
net heat flux to the sink for a number of test 
cases with some of the results of Hottel and 
Sarofim shown for comparison. The results from 
Figs. 7 and 8 and Table 4 indicate that the agree- 
ment between the two calculations is quite good. 
Only one case (furnace diameter 4 ft, firing rate 
4 x lo4 Btu;hft’ sink, Ct = 0033) gives a total 
net heat flux which differs by more than 5 per 
cent between the two methods of calculation. 

In the above Monte Carlo calculation the 
convection heat transfer coefficients calculated 
by the authors and presented in Table 2 were 
used at all times. The firing rates also varied 
slightly from the normal values as indicated in 
Table 4. An increase to six cylindrical radial 
divisions instead of three showed little difference 
in either the temperature or heat flux distribu- 
tions for plug flow under identical conditions. 
However, a change to 6 divisions for Ct = 0.51 
gave a significant difference in the temperature 
distribution as indicated in Fig. 9, although the 
overall heat flux to the sink surface changed only 

0 Monte Carlo 
\ 

. Sarofim 

I I I I 
0.2 0.4 0.6 0.8 

Axial position 

0 

FIG. 8. Comparison of net heat flux to the sink wall calculated 
with that of Sarotim. 3 cylindrical radial divisions. 

Furnace diameter = 4 ft. 
Firing rate = 4 x lo4 Btuihift’ sink. 

Table 4. Net heatflux CO circunferential sink wall 

Dia. Firing Flow Radial Net heat flux to sink wall 

(ft) rate pattern div. (Btu/hft*) 
x 10 Btujhf? Axial index .I 

2 3 4 5 6 I 8 9 

1 1 Plug 3 16900 13300 9500 5980 4430 3240 2760 2490 
1 1 Plug 6 16930 13 150 9110 6340 4288 3402 2940 2289 

4 1 Plug 3 21400 14000 8940 6030 4590 2640 1720 1760 

4 1 Plug 6 21710 15330 8840 5492 3816 2702 2200 1971 
4 1 0.51 3 3000 3806 4200 5770 6400 6445 6901 6870 
4 1 0.51 Conical 2468 2982 4922 6818 6793 5553 5971 7104 
4 1 0.18 3 3404 3957 4476 5790 6442 7754 7809 7581 
4 1 0,033 3 4071 5806 6078 6589 7151 7380 7009 6945 

4 4 Plug 3 42300 35 500 29 600 23400 19900 14800 13200 11700 
4 4 Plug 6 42 120 36060 28040 23810 18690 15240 13 760 11150 
4 4 0.51 3 2868 4120 6020 8649 12 290 14960 18950 21100 
4 4 0.51 Conical 3205 5407 7482 10200 12 170 10860 17500 20 390 
4 4 0.18 3 4310 7060 13440 16960 19500 21000 21650 22210 
4 4 0,033 3 11140 15670 19000 21700 22900 24100 23200 22 200 

F 
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6 cylindrtcal radial 
divisions 

FIG. 9. 

3 cylindrical radial 
dlvtsions 

Temperature prcf iies, “R 
Cf = 0.51 

The furnace temperature distribution 
Furnace diameter = 4 ft. 
Firing rate = 1 x lo4 Btuihift’ sink. 

‘R. 

Conical radial 
divistan 

slightly. This indicates that when the jet struc- 
ture is maintained throughout a significant 
section of the furnace other types of radial 
divisions should be considered. 

Conical uo~un~ ele~ien~s 
The cylin~ical volume elements used by 

Hottel and Sarofm 193 as well as in the above 
comparative calculations, are sufficient when 

plug flow or high recirculation rates are occur- 
ring. The same may be said for the assumption 
of a uniform combustion product concentration 
throughout the entire furnace enclosure. How- 
ever, for small or zero recirculation the flow 
pattern is jet like in structure and cylindrical 
volume elements do not conform well to zones 
of uniform temperature and concentrations. The 
flow pattern and lines of constant partial pres- 
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sures of combustion products are rather conical 
in shape as shown in Fig. 4 for a Craya-Curtet 
number of 0.51 (small recirculation). Therefore, 
the furnace was divided into conical elements 
as shown in Fig. 3 to obtain more accurate 
results for approximately the same computation 
time. An additional refinement was introduced 
simultaneously by setting the centre cone partial 
pressure of carbon dioxide and water vapor each 
at 0.115 atm, and the concentric cone partial 
pressures of the same gases at one half that value. 
The gas surrounding the burning jet was taken 
as clear. 

recirculation region seems to be significant as it 
also occurred for other firing rates. It is likely 
due to the flame jet cooling off as it progresses 
down the furnace. The higher values shown by 
the last two elements would seem to be given 
by the recirculation of hot gases with a high 
partial pressure of radiating gases near the wall 
as well as the proximity of the adiabatic end wall 
which reemits or reflects all the radiation imping- 
ing on it. The heat flux profiles for the same 
diameter and tiring rate for two other Craya-- 
Curtet numbers and plug flow are shown for 
comparison. 

Table 5. 

Convective heat 
flux to sink 
(Btu, hft’) 

(Sarotim) 

1290 (1253) 
1090 

Net radiant heat 
flux to sink 

(Btuihft’) 
(Sarotim) 

6050 (5990) 
6216 

Total net heat 
flux to sink 

(Btu,hft*) 
(Sarotim) 

7360 (7243) 
7306 

Furnace heat 
Transfer 

Efficiency (7”) 

73.6 
73.1 

950 (952) 6778 (6450) 772X (7375) 77.3 

810 6870 7680 76.8 

472 (442) 4898 (4620) 5370 (5062) 53.7 

185 5239 5424 54.2 

718 (689) 5162 (5010) 5880 (5699) 58.8 

1265 (1777) 5132 (6090) 6397 (7867) 64.0 

2280 (2270) 21316 (20 800) 23 596 (23 070) 59.0 

2050 21168 23218 58.0 

695 (705) 10361 (9846) 11056 (10545) 27.9 

441 11060 11501 28.8 

1640 (1933) 14084 (13720) 15124 (15653) 39.3 

6920 (9630) 13068 (11100) 19988 (20 730) 50.0 

A comparison of the results obtained from 
conical and cylindrical radial divisions is given 
in Figs. 9 and 10. It is apparent that substantial 
differences occur. The temperature distribution 
given by conical divisions conforms more to that 
of a jet structure which is undoubtedly closer to 
reality. The heat flux distribution shows a 
markedly higher value near the entrance end 
of the furnace and somewhat lower value near 
the exit. The dip in the heat flux curve in the 

Table 4 gives a break down of the heat flux 
distribution along with the overall heat fluxes 
both convective and radiative and the overall 
furnace efficiency. The overall efficiency is 
defined as the per cent of the energy which is 
released by combustion which is absorbed by the 
sink wall. These can be compared with similar 
efficiencies obtained by Hottel and Sarofim [9] 
from the classical interchange method of solution. 

The computation time for each set of condi- 



260 F. R. STEWARD and P. CANNON 
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FIG. IO. Net heat flux distributions for various flow patterns 
Furnace diameter = 4 ft. 
Firing rate = 4 x IO4 Btu,h/ft’ sink. 

tions using the Monte Carlo Method is of the 
same order as that of the classical solution 
(approximately 2 min per run on the IBM 7094 
for the Monte Carlo vs. 5 min per run on the 
IBM 709 for the classical). It should also be 
remembered that a set of rather extensive and 
tedious numerical integrations were required to 
obtain the interchange factors in preparation 

for the classical solution. No such calculation is 
necessary for the Monte Carlo simulation. 

The Monte Carlo calculation needed only a 
slight modification when conical volume ele- 
ments were introduced. For the classical solution 

it is necessary to repeat the preparatory numeri- 
cal integrations to obtain an entirely new set of 
interchange factors. Even if this was done each 
concentration distribution of radiating gas 
would involve a separate set of such calculations. 
Additional refinements such as radiative scatter- 
ing and directional radiative properties of 
surfaces are easily introduced into the Monte 
Carlo simulation. Either of these refinements 
would again require very substantial numerical 
preparation before the classical solution could 
be started, and then only a single example could 
be analysed from each set of preparatory 
calculations. 

improvements in the Monte Carlo Method 
Although the Monte Carlo Method has very 

significant advantages over the classical inter- 
change method for solving radiative transfer 
problems, it has one great disadvantage, de- 
pendence on random numbers. This dependence 
necessarily gives a certain statistical error in all 
quantities calculated. This error has been shown 
theoretically [l] to vary with the number of 
energy bundles released to the $ power. 

In order to overcome this difficulty a modifica- 
tion of the Monte Carlo Method known as the 
Exodus Method has been recently proposed by 
Emery and Carson [ 181 for the solution of heat 
conduction problems. The Exodus Method 
replaces the random walk of the Monte Carlo 
Method with known probabilities so that a large 
number of bundles are traced simultaneously 
throughout a finite grid until practically all are 
absorbed (9999 per cent or greater) by a wall. 
This method could be applied directly to 
radiative problems, but it has the serious draw- 
back that the required probabilities must be 
calculated from the interchange factors between 
the volume and surface elements. This calcula- 
tion is just the one that must be avoided if any 
substantial advantage is to be achieved by the 
Monte Carlo Method. 

The idea that the decisions do not need to be 
taken in a random fashion is a useful one, how- 
ever. For instance, the distribution of bundles 
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among the gray gases need not be randomly ACKNOWLEDGEMENTS 
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coefficients according to the given fraction. 
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The computer calculations were carried out at the Com- 
Indeed it may be useful to divide the bundles so putation Centre of the University of New Brunswick and 

that one gray gas receives a larger number of later at the Institute of Computer Science of the University 

lower energy bundles because a more accurate 
of Toronto by special agreement. 

calculation& warranted. 
Similarly, when a bundle strikes a surface its 

absorption or reflection need not be determined 
randomly since one can take every second or 
third bundle as reflected according to the surface 
reflectivity. It is also possible to visualize a non- 
random process for the determination of geo- 
metric quantities by initiating an equal number 
of bundles at a set of points distributed evenly 
throughout each volume element where an 
equal number of these same bundles would be 
emitted in a certain fixed number of evenly 
distributed directions. The number of bundles 
absorbed in each element along the path would 
be determined by the exponential absorption 
law. In this manner all random decisions can be 
replaced by calculable ones. The feasibility of 
this method needs further investigation. 

Conclusions 
(1) The Monte Carlo Method has been shown 

to compare favorably with the classical inter- 
change method in respect to computation time 
for determining the radiative’ heat flux and 
temperature profile in a furnace enclosure where 
flow and combustion patterns are taken into 
account. 

9. 

10. 

(2) It was shown that the Monte Carlo Method 
is considerably more flexible in dealing with 
rapidly varying temperature and radiating gas 
concentration profiles since the volume geo- 
metry can be changed with only slight modifica- 
tions in procedure. Thus as the problem 
becomes more sophisticated it appears that the 
Monte Carlo Method becomes more advan- 
tageous. It would also appear worthwhile to 
investigate the use of a modified version of the 
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CALCUL PAR LA MfiTHODE DE MONTE CARLO DU FLUX THERMIQUE 
RAYONNANT DANS UN FOUR CYLINDRIQUE 

Rbum&Les pro!% de tempbrature et les distributions du flux thermique dans un four cylindrique avec 
combustion g une extrtmitk et aver des surfaces-puits circonf&rentielles, sont calcul&s par la mkthode de 
Monte Carlo pour diffkrents types d’kcoulement. La figure de combustion est dttermink g partir d’essais 
exptrimentaux p&is sur des jets froids guidts et son calcul comprend l’effet de fluctuations turbulentes 
dcs concentrations en combustible et oxygtne aussi bien que les valeurs moyennes. 

Les rCsultats correspondent de facon satisfaisante aux calculs faits pour des conditions identiques utili- 
sant la mtthode d’interchange classique pour les termes de rayonnement. La mtthode de Monte Carlo 
est plus flexible que la mtthode classique en tenant compte des variations de concentration dans les gaz 
rayonnants et des changements dans la gtombtrie volumique de I’tlkment, pour se conformer plus ktroite- 
ment g la structure du jet. Des suggestions sont propostes pour Cviter l’utilisation des nombres au hasard 

qui conduisent g des erreurs statistiques, le plus gros dbsavantage de la mtthode de Monte Carlo. 

BERECHNUNG DES WARMETRANSPORTES DURCH STRAHLUNG IN EINEM 
ZYLINDRISCHEN OFEN, NACH DER MONTE-CARLO-METHODE 

Zusammenfassung-Nach der Monte-Carlo-Methode wurden die Temperaturprolile und Wlrmefluss- 
verteilungen in cinem endbefeuerten ryllndrischen Ofen berechnet, der konzentrisch umgcbcn I\t \on 
Oberflichen die als Senke wirken. Verschiedene StrGmungsmuster sind bertickslchtigt. Das Verbren- 
nungsmuster wurde aus genauen experimentellen Datcn ermittelt, die an kalt betriebenen Diisen aufgenom- 
men worden waren. Die Berechnung der Muster schloss sowohl den Effekt von turbulenten Fluktuationen 
der Brennstoff- und SauerstofIkonzentrationcn als such die Mittelwerte ein. 

Die Ergebnisse lassen sich sehr gut mit friiheren Berechnungen fiir identische Bedingungen vergleichen, 
wobei die klassische Austauschmethode ftir die Strahlungsterme verwendet worden war. Die Monte- 
Carlo-Methode erwies sich flexibler als die klassiche Methode in der Behandlung von Konzentrations- 
Lnderungen in den strahlenden Gasen und von Anderungen dcr Geometrie des Volumenelementes. Diese 
Anderungen sollten besserc Ubereinstimmung mit der Strahlenstruktur gewghrleisten. 

Es wurden verschiedene Vorschlige gemacht,um die Benutzung von Zufallszahlen, die zu statistischen 
Fehlem fiihrt und die der Hauptnachteil der Monte-Carlo-Methode ist, zu umgehen. 

HPklMEHEHklE METOflA MOHTE-KAPJIO &7IR PACYETA ;IYYklCTOrO 
TEnJIOBOrO nOTOKA B ~I4JIHH~PIJ~ECHO~ IIEZIR 

AEHOTaq&fsI-MeTOnOM MoHTe-Hapno paccsllTaHbI ~nfi pasnllssbrx TJ~IIOB TeYeHaR npo@n~~ 

TeMnepaTypbI II pacIIpeAeneHHfl TeIIJIOBbIX IIOTOKOB B IIpRMOfi IJIUIHHAp""eCKO8 IIeW CO 

cToKaMn Ha 60~0~0fi noBepxHocTn II T011~0lt B Topqe. PeH(MM ropeHAf3 0npenenHnca Ha 
OCHOBaHHIl TO=IHbIX 3KCIIepHMeHTaJIbHbIX AaHHbIX, IIOJIyYeHHbIX AJIfJ XOJIORHbIX CTpyt B 

KaHanax.B pacseTeHapRAyC0 CpeAHLlMLl3Ha9eHLIRMLI KOH~eHTpaqHtiTOIIJIMRaH KLlCJIOpOAa 

y%TbIBaJlOCb BJIIlfIHlle IIX Typ6yJIeHTHbIX lIyJIbCaI@l. 

Pe3yJIbTaTbI XOpOIIIO COrJIaCyIOTCH C I13BeCTHbIMCI paCseTaM&i JI~WJCTO~O TeIIJIOOGMeHa, 

BbIIIOLUHeHHbIMH KJIaCCWIeCKBMH MeTOHaMH. MeToA MOHTe-KapnO OKa3aJICR 6onee rIpHeM- 

JIeMbIM (II0 CpaBHeHLIK) C KJIaCCHYeCKmMH) HJIFI yYeTa H3MeHeHHt KOHIJeHTpaUHH B HaJIyqa- 

101qnx ra3ax H I43MeHeHd reoMeTpns WIeMeHTa 06%eMa AJIFt 6onee 6nn3Koro COOTBeTCTBPIR 

co c~py~~ypoi CTpyt. npeAnomeHb1 pa3nnqHbIe BapGiaHTbI, no3BonfIlo~lfe Il36eHtaTb 

HCnOJIb30BaHUH CJIyqatiHkJX YHCeJI, IIpHBORRWIfX K CTaTPlCTWieCKPIM OMH6KaM,qTO FfBJIHeTCfl 

OCHOBH~IM HeROCTaTKOM MeTOAa MOHTe-HapnO. 


